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Abstract: A network-theoretic approach for determining the complexity of a graph is proposed. This approach
is based on the relationship between the linear algebra (theory of determinants) and the graph theory. In this
paper we contribute a new algebraic method to derive simple formulas of the complexity of some new networks
using linear algebra. We apply this method to derive theexplicit formulas for the friendship network F;* and the
subdivision of friendship graph S(F;"). We also calculate their spanning trees entropy and compare it between
them.Finally, we introduce an open problem "Any improvement for calculating of the determinant in linear
algebra, we can investigate this improvement as a new method to determine the number of spanning tree for
a given graph.

Mathematics Subject Classification: Primary 05C05, Secondary 05C30
Key words: Number of spanning trees + Friendship networks * Entropy

INTRODUCTION

We deal with simple and finite graphs G = (V, E), where V is the vertex set and E is the edge set. A graph T is called
a tree if it has not circuits so there is exactly one path from each vertex in the tree to each other vertex in the tree.
Spanning tree of a graph G is a tree containing all vertices of G. The number of spanning trees in G, also called, the
complexity of the graph G, denoted by (G).

There are many methods which determine the number of spanning trees for a given graph G. Some of them are
classified under combinatorial approach [1, 2, 3,4, 5] and the other are classified under algebraic approach [6, 7, 8, 9].

Chebyshev polynomials method was used to determine the number of spanning trees for a given graph G as an
algebraic method [10, 11, 12, 13, 14].

In this paper we contribute a new algebraic method which is based on Dodgson and Chio’s method. It has an
advantage that calculate determinants of n x n (n = 3) matrix, by reducing determinants to 2™ Order.

Dodgson and Chio’s Condensation Method: Chio’s condensation is a method for evaluating an n xn determinant in terms
of (n-1) x(n-1) determinants; [15]:
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Dodgson’s condensation method computes determinants of size nxn by expressing them in terms of those of size
(n-1)x(n-1) and then expresses the latter in terms of determinants of size (n-2)x(n-2) and so on [16].

Armend [17] proposed another method is based on Dodgson and Chio’s method, but the difference between them
is that this new method is resolved by calculating 4 unique determinants of (n-1) x(n-1) Order, (which can be derived from
determinants of nxn order, if we remove first row and first column or first row and last column or last row and first column
or last row and last column, elements that belongs to only one of unique determinants we should call them unique
elements) and one determinant of (7-2) X(n-2) order which is formed from » xn order determinant with elements a, ; with
i, j # 1, n, on condition that the determinant of (n-2) x(n-2) # 0.

Theorem 3.1 [17]:
Every determinant of nxn (n>2) order can be reduced into 2x2 order determinant, by calculating 4 determinants of
(n-1)%(n-1) order and one determinant of (n-2) x(n-2) order, on condition that (n-2) x(n-2) order determinants to be
different from zero.

Ongoing is presented a scheme of calculating the determinants of # x n order according to this formula:
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The |B| is (n-2) %(n-2) order determinant which is the interior determinant of determinant |4| while |C|, |D|, |E| and
|F| are unique determinants of(n-1) X (n-1)order, which can be formed from n xnorder determinant.

Proof: We can see [17].

Theorem 3.2: The number of spanning trees of the friendship graph F;*

T(F3k )= 3%k >1, where k is the number of blocks.

Proof:

Let p = 2k+1 and q = 3k are the number of vertices and edges of F; respectively.

Let the L = D - A be the Laplecian matrix for F; such that:

) S R L |
21 2 —1 0 e e e 0
21 =1 2 0 e e e 0
R
-1
-1 2 0
0 0 0 2l

According to Kirchhoff ' Theorem, the number of spanning trees for F,* is the co-factor matrix L that is:
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According to Dodgson and Chio's method, we have
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where B,C,D,E,Fare (2k —2) x (2k — 2),(2k = 1) x (2k = 1),(2k = 1) x (2k —1),(2k —=1) x (2k —1),(2k —1) x (2k — 1) respectively.

By using properties of determinants we get:
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Theorem 3.3: The number of spanning trees of the subdivision of friendship graphS(F*) is
T(S(F3k ) = 6k,k >1, where k is the number of blocks.

Proof:

Let p = 5k+1 and q = 6k are the number of vertices and edges of S(F") respectively.
Let the L = D — Abe the Laplecian matrix for S(F;* such that:
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According to Kirchhoff ' Theorem, the number of spanning trees for F,* is the co-factor matrix L that is:
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where B, C, D, E, F are (2k — 2) x (2k - 2),(2k - 1) x (2k —1),(2k = 1) x (2k —1),(2k = 1) x (2k —1),(2k — 1) x (2k — 1) respectively.
By using properties of determinants we get:
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Therefore we get
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Spanning Tree Entropy: The entropy of spanning trees
of a network or the asymptotic complexity is a
quantitative measure of the number of spanning trees
and it characterizes the network structure. We use this
entropy to quantify the robustness of networks. The
most robust network is the network that has the highest
entropy. We can calculate its spanning tree entropy
which is a finite number and a very interesting quantity
characterizing the network structure, defined as in [18]
as:

In7(G)

Z(G) =
@)= e 0] (1)

Corollary 4.1: The entropy of spanning trees of the
friendship network F" is.

Z(F) = 0.5493

Proof: From the Theorem 3. 2. and equation 1 and
[V(F}) | =n =2k + 1 we obtain:
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= In(~/3)=0.5493

Corollary 4.2: The entropy of spanning trees of the
friendship network S(F3") is.

Z(F,) = 0.3584

Proof: From the Theorem 3. 3. andequation 1 and |V(F")
| =n=5k + 1 we obtain:

-1 1
= Q)
In6 > lim (n—1)In63

n n—x0 n

=In(y/6)=0.3584.

Z(S(F) = lim

An Open Problem: Now, we suggest an open problem
"Any improvement for calculating of the determinant in
linear algebra, we can investigate this improvement as
a new method to determine the number of spanning tree
for a given graph.
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CONCLUSION

In this paper,we contributed a new algebraic
method to derive simple formulas of the complexity of
some new networks using linear algebra. We applied
this method to derive theexplicit formulas for the
friendship network F;* and the subdivision of
friendship graph S(F,'. Finally, we calculated their
spanning trees entropy and compare it between them.

REFERENCES

1. W. Feussner, W., 1904 Zur Berechnung der
Stromstrrke in netzformigen Letern, Ann. Phys.,
15:385-394.

2. Prifer, H., 1918. Neuer Beweiseines
Satzesiiber Permutationen, Arch. Math. Phys.,
27: 142-144.

3. Bogdanowicz, Z.R., 2008. Formulas for the number
of spanning trees in a fan. Applied Mathematical
Sciences, 2: 781-786.

4. Hassan M. and S. Haghighi, 2009. Recursive
Relations for the Number of Spanning Trees.
Applied Mathematical Sciences, 3(46): 2263-2269.

5. Modabish, A. and M. El-Marraki, 2011. The
number of spanning trees of certain families of
planar maps. Applied Mathematical Sciences,
5: 883-898.

6. Sachs, H., 1962. UberselbstkomplementreGraphen.
Publ. Math. Debrecen, 9: 270-288.

7. Temperley, H., 1964. On the mutual cancellation of
cluster integrals in Mayer’s fugacity series, Proc.
Phys. Soc. Lond., (A) 83: 3-16.

8. Van Lint, J.H. and R.M. Wilson, 1992. A course in
Combinatorics, Cambridge University Press,
London.

9. Brouwer, A.E. and W.H. Haemers, 2011. Spectra of
graphs, Springer.

10. Clark, L., On the enumeration of multipartite
spanning trees of the complete graph, Bull. ICA,
38: 50-60.

11. Yuanping, Z., Y. Xuerong and J. Mordecai, 2005.
Chebyshev polynomials and spanning trees
formulas for circulant and related graphs, Discrete
Math, 298: 334-364.

12. Qiao, N.S. and B. Chen, 2007. The number of
spanning trees and chains of graphs, J. Appl.
Math., 9: 10-16.

13. Daoud, S.N., 2013. Complexity of some special
named graphs and Chebyshev polynomials, Int. J.
Appl. Math. Stat., 32(2): 77-84.



World Appl. Sci. J., 36 (7): 888-895, 2018

14. Daoud, S.N., 2012. Some applications of spanning

15.

16.

trees of circulant graphs C6 and their applications,
J. Math. Stat. Sci., 8(1): 24-31.

Eves, H., 1990. An Introduction to the History of
Mathematics, pages 405 and 493, Saunders College
Publishing.

Eves, H., 1996. Chio’s Expansion, 3.6 in Elementary
Matrix Theory, New York: Dover, pp: 129-136.

895

17. Armend Salihu, 2012. New Method to Calculate

18.

Determinants of n X n (n = 3) matrix, by Reducing
Determinants to 2™ Order, International Journal of
Algebra, 6(19): 913-917.

Lyons, R., 2005. Asymptotic enumeration of
spanning trees. Combinatorics, Probabilityand
Computing, 14(04): 491-522.



